Exercise 21

Compute Δy and $d y$ for the given values of x and $d x=\Delta x$. Then sketch a diagram like Figure 5 showing the line segments with lengths $d x, d y$, and Δy.

$$
y=\sqrt{x-2}, \quad x=3, \quad \Delta x=0.8
$$

Solution

Compute the derivative of y.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \sqrt{x-2} \\
& =\frac{d}{d x}(x-2)^{1 / 2} \\
& =\frac{1}{2}(x-2)^{-1 / 2} \cdot \frac{d}{d x}(x-2) \\
& =\frac{1}{2}(x-2)^{-1 / 2} \cdot(1) \\
& =\frac{1}{2 \sqrt{x-2}}
\end{aligned}
$$

Consequently, the differential of $y=\sqrt{x-2}$ is

$$
d y=\frac{1}{2 \sqrt{x-2}} d x
$$

so when $x=3$ and $\Delta x=d x=0.8$,

$$
\begin{aligned}
d y & =\frac{1}{2 \sqrt{3-2}}(0.8)=0.4 \\
\Delta y & =y(3+0.8)-y(3)=\sqrt{(3+0.8)-2}-\sqrt{3-2} \approx 0.341641
\end{aligned}
$$

The function is plotted below along with its tangent line at $x=3$.

